
1 Linear programming: history and overview

History

Linear programming problems (LPPs) are a specific class of mathematical
problems, in which a linear function is maximised (for example, maximal
profit) or minimised (minimal cost) subject to a given set of linear con-
straints (resource restriction or contract requirements). This problem class
is rich enough to cover many interesting and important applications, yet
most LPPs can be solved efficiently even if the number of variables and
constraints is large.

LPPs were first seriously studied in the late 1930s by the Soviet math-
ematician Leonid Kantorovich (1912-1986) and by the Russian-born Amer-
ican economist Wassily Leontief (1906-1999) in the areas of manufactur-
ing schedules and of economics, respectively. Kantorovich authored several
books including “The Mathematical Method of Production Planning and
Organization’’ and “The Best Uses of Economic Resources’’. For his work
(published in 1939, when he was just 27 years old), Kantorovich was awarded
The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred No-
bel (Nobel Prize), which he shared with another mathematician Tjalling
Koopmans. This prize, was given ”for their contributions to the theory of
optimum allocation of resources”.

During World War II, linear programming was used extensively in wartime
operations: modelling efficient scheduling and resources allocation subject
to certain natural restrictions (for example, costs and availability). In 1947
the American mathematician George Dantzig (1914-2005) introduced the
famous simplex method, which greatly simplified the solution of linear pro-
gramming problems. In the same year, another famous mathematician John
von Neumann (1903-1957) established the theory of duality.

There are a number of algorithms for linear programming (other than
the simplex method). They include Khachiyan’s ellipsoidal algorithm, Kar-
markar’s projective algorithm, and path-following algorithms.

Modern application

Many modern industries use linear programming as a standard rigorous tool
to allocate their available resources in a best possible (optimal) way. Exam-
ples of important application areas include staff scheduling (including airline
crew shift allocation), shipping, telecommunication, oil refining and blend-
ing, stock and bond portfolio selection, data fitting, signal processing and
many others.

Linear programming is part of a wider area of modern mathematics,
called mathematical programming (also known as “mathematical optimisa-
tion” or just “optimisation”). In this unit, you will learn about linear pro-
gramming and a bit beyond it (integer programming and convex optimisa-
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tion). You will learn how to recognise such kind of problems, formulate them
mathematically and solve using modern optimisation techniques.
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2 Linear functions

In this section we provide a brief review of results from linear algebra that
are used in this unit.

Linear spaces, vectors and matrices

We start by introducing a number of definitions.

Definition 2.1 A matrix of dimensions m× n is an array of real numbers
aij , such that

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


Matrices are always denoted by upper-case boldface characters. To refer to
an (i, j)−th entry of a matrix A we use the notation aij.

Definition 2.2 An m×n-dimensional matrix is a square matrix, if m = n.
In this case, this matrix is also called an n−dimensional square matrix.

Definition 2.3 An n-dimensional square matrix is symmetric matrix, if
aij = aji, i, j = 1, . . . , n.

Definition 2.4 A row vector is a matrix with m = 1 and a column vector
is a matrix with n = 1.

The word vector always means column vector. Vectors are usually denoted
by low-case boldface character. The notationRn is used to indicate the space
of all n−dimensional vectors. For any vector x ∈ Rn we use x1, x2, . . . , xn
to indicate its components:

x =


x1
x2
...
xn

 .
We use O to denote vectors and matrices with all components equal to zero.

Definition 2.5 The transpose AT of an m×n matrix A is the n×n matrix

AT =


a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...
a1m a2m . . . anm

 .
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Therefore, the (i, j)−th entry of A is also the (j, i)−th entry of AT . If x is
a column vector then xT is a row vector and vice versa.

Definition 2.6 If x and y are two vectors in Rn then the quantity

xTy = yTx =
n∑

i=1

xiyi

is called inner product of x and y.

Definition 2.7 Two vectors are called orthogonal is their inner product is
zero.

Definition 2.8 The expression
√

xTx is called the Euclidean norm and de-
noted by ‖x‖.

Note the following.

1. ‖x‖ ≥ 0 and the equality holds if and only if x = O.

2. Schwartz inequality: |xTy| ≤ ‖x‖‖y‖. The equality holds if and only if
one of the vectors is a scalar multiple of another one (that is, x = ay).

If A is an m × n matrix, we use Aj to indicate its j−th column and ai to
indicate the entries of its i−th row.

Definition 2.9 Given two matrices A of dimension m×n and B of dimen-
sion n× k the matrix product AB is an m × k dimensional matrix whose
(ij) entry is

n∑
l=1

ailblj = aT
i Bj ,

where aT
i is the i−th row of A and Bj is the j−th column of B.

Recall that a matrix is called square matrix if the number of rows is the
same as the number of columns.

Definition 2.10 A square matrix with all the diagonal elements equal to
one and all the off-diagonal elements equal to zero is called the identity
matrix, denoted by I.

Consider the following matrix multiplication properties.

1. Matrix multiplication is associative: (AB)C = A(BC).

2. Matrix multiplication, in general, is not commutative: AB = BA is
not always true.

3. Matrix product transposition: (AB)T = BTAT .
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4. Identity matrix properties: IA = A and BI = B for any matrix A
and B of dimensions compatible with those of I.

Definition 2.11 If x is a vector (A is a matrix), the notation x ≥ O or
x > O (A ≥ O or A > O) means that all the components of x (A) are
non-negative or positive respectively.

Definition 2.12 A square matrix A is invertible or nonsingular if there
exists a matrix B (same dimension as A), such that

AB = BA = I.

Such a matrix B is unique and called the inverse of A and denoted A−1.

Note the following important properties of invertible matrices.

1. If A and B are invertible matrices of the same dimension, then the
product AB is also invertible and

(AB)−1 = B−1A−1.

2. For an invertible matrix A the following holds:

(AT )−1 = (A−1)T .

Definition 2.13 Consider a finite collection of vectors x1, . . . ,xl ∈ Rn.
We say that these vectors are linearly dependent if there exist real numbers
a1, . . . , al, such that not all of them are zero and

l∑
i=1

aix
i = O. (1)

Otherwise, they are called linearly independent.

Definition 2.14 A linear combination of a finite collection of vectors

x1, . . . ,xl ∈ Rn

is any expression of the form

x =
l∑

i=1

aix
i,

where a1, . . . , al are any real numbers (scalars).

Theorem 2.1 Vectors x1, . . . ,xl ∈ Rn are linearly dependent if and only if
at least one of these vectors is a linear combination of the remaining vectors.
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Proof: We have to proof both directions:

1. if vectors x1, . . . ,xl ∈ Rn are linearly dependent then at least one of
them is a linear combination of the remaining vectors;

2. if at least one of the vectors x1, . . . ,xl is a linear combination of the
remaining vectors, then these vectors are linearly dependent.

If vectors x1, . . . ,xl ∈ Rn are linearly dependent, then their linear com-
bination

∑l
i=1 aix

i is zero while at least one of the numbers a1, . . . , al is not
zero. Assume that ak 6= 0, 1 ≤ k ≤ l, then, since ak 6= 0,

xk =

l∑
i=1,i 6=k

ai
ak

xi.

Therefore, vector xk is a linear combination of the remaining vectors.
Now assume that vector xk is a linear combination of the remaining

vectors. Then
l∑

i=1

aix
i = O,

where ak = −1 6= 0. Therefore, these vectors are linearly dependent.
�

It can be shown that

1. a square matrix A is invertible if and only if its columns (rows) are
linearly independent;

2. any n+ 1 or more vectors in Rn are linearly dependent.

Linear functions and systems of linear equations

Definition 2.15 An affine function represents a function of the form

f(x1, . . . , xn) = a1x1 + · · ·+ anxn + b = ax + b,

where x ∈ Rn represents the variables, a = (a1, . . . , an) is a fixed row vector
and b is a fixed number (constant term).

A constant function f(x1, . . . , xn) = b is also considered affine in this con-
text. Its graph is a horizontal line (if there is only one independent variable).

Definition 2.16 A linear function represents a function of the form

f(x1, . . . , xn) = a1x1 + · · ·+ anxn = ax, (2)

where x ∈ Rn represents the variables, a = (a1, . . . , an) is a fixed row vector
(constant term b = 0).
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It can be shown that:

1. the sum of a finite number of linear (affine) functions is linear (affine);

2. if f(x) is linear (affine), then kf(x) is also linear (affine), where k is a
real number.

Definition 2.17 A linear equation is an algebraic equation where the left-
hand side is represented by a linear function and the right-hand side is a
constant.

It is clear that an equation in which the left-hand side is represented by
an affine function and the right-hand side is a constant is also linear. In
general, linear equations have the following form:

a1x1 + · · ·+ anxn = ax = b, (3)

where x ∈ Rn represents the variables, a = (a1, . . . , an) is a fixed row vector,
b is a constant.

Definition 2.18 A system of linear equations (or linear system) is a set of
linear equations with the same variables.

Definition 2.19 A solution to a linear system is a set of numbers (assigned
to the variables) such that all the equations are simultaneously satisfied.

Definition 2.20 The set of all possible solutions is called the solution set.

There are three different possibilities.

1. The solution set contains infinitely many elements, means that the
system has infinitely many solutions.

2. The solution set contains only one element, means that the system has
a single (unique) solution.

3. The solution set is empty, means that the system has no solution.

A system of linear equations can be written as

a11x1 + a12x2 + · · ·+ a1nxn = b1;
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

(4)

The corresponding matrix form is

Ax = b, (5)

where A ∈ Rm×n (that is m × n matrix), x ∈ Rn is a column vector
(variables) and b ∈ Rm is a fixed column vector (right-hand side).
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Definition 2.21 If in a linear system all the equality signs are substituted
by the same inequality sign, then this system is said to be a system of linear
inequalities.

Similarly, a system of linear inequalities can be written as

Ax < (or ≥, >, ≤) b, (6)

where A ∈ Rm×n, x ∈ Rn is a column vector (variables) and b ∈ Rm is a
fixed column vector (right-hand side).

Hyperplanes, halfspaces, polyhedra and polytopes

We start with several definitions.

Definition 2.22 A set S ∈ Rn is said to be bounded if there exists a con-
stant M , such that the absolute value of every component of every element
of this set does not exceed M . Otherwise, S is said to be unbounded.

Definition 2.23 A convex polyhedron (plural polyhedra) is a set that can
be expressed in the form

{x ∈ Rn| Ax ≥ b},

where A ∈ Rm×n and b ∈ Rm.

Therefore, any convex polyhedron is formed by all the possible solution to
the corresponding system of linear inequalities. If such a system contains
only one inequality and thus b is a scalar, then there are two possibilities.
In this unit, we will be working with convex polyhedra, therefore, in some
cases, we will refer to them as just polyhedra for simplicity.

1. The set {x ∈ Rn | aTx = b} is called a hyperplane.

2. The set {x ∈ Rn | aTx ≤ b} ({x ∈ Rn | aTx ≥ b}) is called a halfspace.

Each hyperplane divides the original space into two halfspaces (positive and
negative, see Figure 1).

Note that

• hyperplanes and halfspaces are unbounded;

• a hyperplane is the boundary of a corresponding halfspace;

• a convex polyhedron is an intersection of a finite number of halspaces;

• bounded polyhedra are also called polytopes.
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x+ y = 2

x+ y > 2

x+ y < 2

X

Y

0

Positive half-space

Negative half-space

Figure 1: Positive and negative halfspaces.
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3 Convex functions and convex sets

Convex functions

In section 2 we were working with linear and affine function. Now we are
ready to make one more step forward and introduce convex functions.

Definition 3.1 A function f : Rn → R is called convex if for every pair of
vectors x,y ∈ Rn and every λ ∈ [0, 1], we have

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Definition 3.2 A function f is called concave if the function −f is convex.

It is possible to prove that linear and affine functions are convex and concave
simultaneously. Moreover, they are the only functions, that are both convex
and concave.

Theorem 3.1 Let f1, . . . , fm : Rn → R are convex function, then the func-
tion

f(x) = max
i=1,...,m

fi(x)

is also convex (maximum of convex functions is convex).

Proof:

f(λx + (1− λ)y) = max
i=1,...,m

fi(λx + (1− λ)y)

≤ max
i=1,...,m

(λfi(x) + (1− λ)fi(y))

≤ max
i=1,...,m

λfi(x) + (1− λ) max
i=1,...,m

fi(y)

= λf(x) + (1− λ)f(y).

�

Example 3.1 Show that the function f(x) = |x| is convex.
First note that f(x) can be expressed as

f(x) = max{x,−x},

that is, the maximum of two linear (and therefore convex) functions f1(x) =
x and f2(x) = −x. Applying Theorem 3.1, obtain that f(x) = |x| is convex.

Theorem 3.2 Multiplication by a nonnegative constant and summation pre-
serve convexity.

1. If f : Rn → R is a convex function and α is a nonnegative number,
then g(x) = αf(x) is also convex.
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2. If f1, f2 : Rn → R are convex functions, then g(x) = f1(x) + f2(x) is
also convex.

Proof: Consider each case separately.

1. Multiplication by a nonnegative constant.

g(λx + (1− λ)y) = αf(λx + (1− λ)y)

≤ α(λf(x)) + α(1− λ)f(y)

= λg(x) + (1− λ)g(y).

2. Sum of convex functions.

g(λx + (1− λ)y) = f1(λx + (1− λ)y) + f2(λx + (1− λ)y)

≤ λf1(x) + (1− λ)f1(y) + λf2(x) + (1− λ)f2(y)

= λg(x) + (1− λ)g(y).

� Based on Theorems 3.1 and 3.2,
one can conclude that if

fi : Rn → R, i = 1, . . . ,m

are convex and the corresponding scalars αi, i = 1, . . . ,m are nonnegative,
then

f =
m∑
i=1

αifi

is convex.

Definition 3.3 The domain of a function f(x) (notation: dom(f)) is the
complete set of possible values of the independent variable x.

From Calculus:

• Assume that f(x) is twice continuously differentiable and the do-
main is the real line, then f(x) convex if and only if f ′′(x) ≥ 0 for all
x.

• A twice differentiable function f(x) of one variable is convex on an
interval [a, b], a 6= b if and only if its second derivative is non-negative
there: f ′′(x) ≥ 0 for all x ∈ [a, b].

Example 3.2 Consider the following functions and their second deriva-
tives:
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• f1(x) = x3, then f1
′′ changes sign at x = 0 and therefore f1(x) is

neither convex nor concave;

• f2 = x4, then f2
′′ ≥ 0 and therefore f2(x) is neither convex;

• f3 = −x4, then f3
′′ ≤ 0 and therefore f2(x) is neither concave (or just

simply because f2(x) = −f3(x) is convex).

Theorem 3.3 (Composition with an affine mapping) Let f : Rn → R,
A ∈ Rn×m and b ∈ Rn. Define g : Rm → R by

g(x) = f(Ax + b)

with
dom(g) = {x : Ax + b ∈ dom(f)}.

Then if f is convex, so is g.

Proof: Let x, y ∈ R and λ ∈ [0, 1], then:

g(λx + (1− λ)y) = f(A(λx + (1− λ)y) + b)

= f(λ(Ax + b) + (1− λ)Ay + b)

≤ λf(Ax + b) + (1− λ)f(Ay + b)

= λg(x) + (1− λ)g(y).

Therefore, g is convex.
�

Definition 3.4 A vector x is a local minimum of f if f(x) ≤ f(y) for all
y in a neighbourhood of x.

Definition 3.5 A vector x is a global minimum of f if f(x) ≤ f(y) for all
y.

Figure 2 illustrates the difference between a local minimum (x = 20) and a
global one (x = 80).

If f is convex, any local minimum is also a global one. This special prop-
erty of convex functions helps to design powerful optimisation algorithms.
Note that convex functions may have more than one global minimum (see
Figure 3, where any x ∈ [30, 70] is a global minimum).

Example 3.3 Show that function

F (t) = min{g1(t), . . . , gn(t)},

where gi(t), i = 1, . . . , n are concave functions on [a, b] is concave on [a, b].
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Figure 2: Local minimum x = 20 vs global x = 80.
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Figure 3: Any x ∈ [30, 70] is a global minimum.
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Note, first of all, that

F (t) = min{g1, . . . , gn} = −max{−g1, . . . ,−gn},

where the functions hi(t) = −gi(t), i = 1, . . . , n are convex. Since maximum
of convex functions is convex, function

−F (t) = max{h1(t), . . . , hn(t)}

is convex and therefore function

F (t) = min{g1(t), . . . , gn(t)}

is concave.

Convex sets

Convex sets play a very important role in optimisation.

Definition 3.6 A set S ⊂ Rn is convex if and only if for any pair x, y ∈ S
and any λ ∈ [0, 1] (that is, 0 ≤ λ ≤ 1), we have

λx + (1− λ)y ∈ S.

In other words, a set S is convex if and only if for any pair x,y ∈ S, the
whole line segment joining these two vectors belongs to S.

Example 3.4 Figure 4 depicts two sets. The first set (left), a polygon is
convex, since for any pair of point from this set, the whole segment, joining
these points together, also belongs to this set. The second set (right) is not
convex, since points X and Y belong to this set, while point Z, lying on the
segment XY does not belong to this set.

Definition 3.7 If λ ∈ [0, 1], then λx + (1 − λ)y is a weighted average of
the vectors x and y.

Similarly, one can define a weighted average for more than two vectors (finite
number).

Definition 3.8 Let x1, . . . ,xk ∈ Rn and λ1, . . . , λk be nonnegative scalars
whose sum is equal to one (that is,

∑k
i=1 λi = 1).

• The vector
∑k

i=1 λix
i is called a convex combination (weighted aver-

age) of the vectors x1, . . . ,xk.

• The set of all convex combinations of the vectors x1, . . . ,xk is called
the convex hull of these vectors (see Figure 5).
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Figure 4: Convex and nonconvex sets.
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Figure 5: Convex hull: ABCD is the convex hull of A, B, C, D, F.
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It can be demonstrated that the convex hull of a finite number of vectors
is a convex set. Also, a convex combination of a finite number of elements
of a convex set belongs to that set as well.

Theorem 3.4 Hyperplanes and halfspaces are convex sets.

Proof:
Hyperplanes: Consider two vectors x and y from Rn, such that

aTx = b and aTy = b.

Consider now z = λx + (1− λ)y, where λ ∈ [0, 1].

aT z = aTλx + aT (1− λ)y = λb+ (1− λ)b = b.

Halfspaces: Consider two vectors x and y from Rn, such that

aTx ≥ b and aTy ≥ b.

Consider now z = λx + (1− λ)y, where λ ∈ [0, 1].

aT z = aTλx + aT (1− λ)y ≥ λb+ (1− λ)b = b.

�

Theorem 3.5 The intersection of convex sets is convex.

Proof: Let Si, i ∈ I are convex sets, where I is an index set (set of indices).
Assume that x and y belong to the intersection ∩i∈ISi and λ ∈ [0, 1]. Since
Si is convex, vector

z = λx + (1− λ)y ∈ Si.

Therefore, z belongs to every Si, i ∈ I and therefore z belongs to the in-
tersection of the sets Si, i ∈ I. Therefore, the intersection of convex sets is
convex.

�
Combining Theorems 3.4 and 3.5, obtain that every convex polyhedron

is a convex set.

Definition 3.9 Let P be a convex polyhedron. A vector x ∈ P is an ex-
treme point of P if we can not find two vectors y 6= x and z 6= x that belong
to this polyhedron and x = λy + (1− λ)z, where λ ∈ [0, 1].

Essentially, this means that an extreme point can not be presented as a
convex combination of two distinct points from the same polyhedron (that is,
can not lie on a segment line, connecting two points from this polyhedron).
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Definition 3.10 Let P be a convex polyhedron. A vector x ∈ P is a vertex
of P if there exists a vector c such that cTx < cTy for all y, such that y ∈ P
and y 6= x.

Therefore, for any vertex there exists a hyperplane, which is passing through
this vertex and all the other points of this polyhedron (distinct from the
vertex) lie in the same halfspace (that is, lie from one side of the hyperplane).

Theorem 3.6 Let P be a nonempty polyhedron and x ∈ P . x is a vertex if
and only if it is an extreme point (that is, all extreme points are also vertices
and vice versa).

Remark 3.1 A continuous, twice differentiable function of several variables
is convex on a convex set if and only if its Hessian matrix of second partial
derivatives is positive semidefinite on the interior of the convex set. In the
case of univariate functions, the Hessian matrices are simply their second
derivatives.

Remark 3.2 The Hessian matrix of a twice differential function of n vari-
able f(x1, . . . , xn) is the matrix whose elements

hij =
∂2f

∂xi∂xj
.

To check if H is positive semidefinite, one can check all the principal minors
of the matrix. If all of them are nonnegative, the matrix is positive semidefi-
nite. There are other ways to check this property. We will talk about it later
in this unit.

4 Local optimality for twice differentiable func-
tions

In this section we review local optimality conditions for twice differential
functions. This assumption is very strong and can not be removed very
easily. We will only talk about functions of one variable (also known as
univariate functions) and functions of two variables. In general, functions
of two or more variables are called multivariate functions.

Recall that a point a ∈ X ⊂ R is said to be a stationary point of a
univariate function f(x) differentiable in X if its first derivative f ′(x) = 0.
In the case of multivariate functions, a point is stationary if all the partial
derivative vanish (that is they are equal to zero) at this point.

In general, there are two types of points at which a function may attain
its (local) maximum or minimum. These points are stationary points and
points where the function is not differentiable. These two types of points
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are also called critical points. In this section we are only concentrating on
twice differentiable functions and therefore we exclude the points where the
derivative does not exist.

In the case when a function is defined on a closed set (for example, an
interval or closed hyperbox (a multidimensional analogue of a rectangle), it
is also important to investigate the end-points.

Univariate functions

Theorem 4.1 Consider a twice differentiable function f : X → R. If a
is a stationary points and f ′′(x) > 0 then this stationary point is a local
minimum. If a is a stationary points and f ′′(x) < 0 then this stationary
point is a local maximum.

Note that if the second derivative is zero, a more detailed analysis is
required to identify the nature of this stationary point.

Example 4.1 Consider f(x) = x4, g(x) = −x4 and h(x) = x3. Then x = 0
is a stationary point for these functions, since

f ′(0) = g′(0) = h′(0) = 0.

The second derivatives f ′′, g′′ and h′′ are also zero at x = 0. For f(x) this
stationary point is a local minimum, for g(x) it is a local maximum, while
for h(x) it is neither (point of inflection).

Multivariate functions

Theorem 4.2 Consider a twice differentiable function f : X × Y → R. If
(a, b) is a stationary points and

• H = ∂2f
∂x2

∂2f
∂y2
− ( ∂2f

∂x∂y )2 < 0 then this stationary point is a saddle point;

• H = ∂2f
∂x2

∂2f
∂y2
− ( ∂2f

∂x∂y )2 > 0 and ∂2f
∂x2 > 0 then this stationary point is a

local minimum;

• H = ∂2f
∂x2

∂2f
∂y2
− ( ∂2f

∂x∂y )2 > 0 and ∂2f
∂x2 < 0 then this stationary point is a

local maximum.

Note that if H = ∂2f
∂x2

∂2f
∂y2
− ( ∂2f

∂x∂y )2 = 0 then more advanced analysis is
required to identify the nature of the stationary point.

Example 4.2 For the function

f(x, y) = xy − (x+ y)2

find all stationary points and identify their nature.
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Note, first of all, that

f(x, y) = xy − (x+ y)2 = −x2 − y2 − xy.

First order partial derivatives are:

∂f

∂x
= −2x− y;

∂f

∂y
= −2y − x.

Second order partial derivatives are:

∂2f

∂x2
= −2;

∂2f

∂y2
= −2;

∂2f

∂x∂y
= −1.

All the stationary points are solutions of the system{
2x+ y = 0;
2y + x = 0.

Therefore, the only stationary point is (0, 0). At this point

H = (−2)(−2)− (−1)2 = 3 > 0.

Since ∂2f
∂x2 = −1 < 0, point (0, 0) is a local maximum.
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5 Linear programming

Problem formulation

A general linear programming problem or LPP can be formulated as follows:

minimise cTx (7)

subject to aT
i x ≥ bi, i ∈M1; (8)

aT
i x ≤ bi, i ∈M2; (9)

aT
i x = bi, i ∈M3; (10)

xj ≥ 0, j ∈ N1; (11)

xj ≤ 0, j ∈ N2. (12)

Now we need to explain all the components of this problem.

• The variables x1, . . . , xn are called decision variables.

• c = (c1 . . . , cn) is the cost vector.

• The function cTx in (7) is called the objective function or cost func-
tion.

• The set of equalities and inequalities (8)-(12) are called the constraints.

Definition 5.1 A vector x satisfying all the constraints is called a feasible
solution. The set of all feasible solutions is called the feasible set or feasible
region.

If index j is in neither N1 nor N2 then there are no restriction on the sign
of xj. In this case, we say that xj is a free variable or unrestricted variable.

Definition 5.2 A feasible solution x∗ that minimises the objective function
is called an optimal feasible solution or an optimal solution.

Definition 5.3 If the optimal cost is −∞ (minimisation), we say that the
cost is unbounded below and the problem itself is unbounded problem.

Note that any maximisation problem (maximising cTx) can be formulated
as minimising −cTx, see next section for details. Therefore, we can also
define unbounded problems in the case of maximisation.

Definition 5.4 If the optimal cost is +∞ (maximisation), we say that the
cost is unbounded above and the problem itself is unbounded problem.
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Definition 5.5 A LPP is called infeasible if the corresponding feasible set
does not contain any point (that is, the corresponding system of linear equal-
ities and inequalities does not have any solution).

Example 5.1 Consider the following linear programming problem:

minimise 3x1 − 2x2 + 7x3 (13)

subject to x1 + 5x2 + x4 ≤ 2 (14)

3x1 − x2 = 5 (15)

x2 − x3 ≥ 3 (16)

x1 ≥ 0 (17)

x2 ≤ 0 (18)

• x1, x2, x3 and x4 are the decision variables, whose values are to be
chosen to minimise the objective function. x = (x1, x2, x3, x4)

T is the
decision vector.

• The objective (cost) function is in (13) and the corresponding cost
vector cT = (3,−2, 7, 0).

• The constraints (14), (16), (18) and (17) are linear inequality con-
straints, while the constraint (15) is a linear equality constraint. The
constraint (15) can be expressed as aTx = 5, where a = (3,−1, 0, 0).

• The sign of the variables x3 and x4 is unrestricted, while x1 is non-
negative and x2 is nonpositive.

Definition 5.6 If a vector x∗ satisfies a linear constraint as equality (equal-
ity or inequality constraints) then this constraint is active or bounding at x∗.

Consider the following LPP

minimise 3x1 − 2x2 + 7x3

subject to x1 + 5x2 + x3 ≤ 2

3x1 − x2 ≤ 5

x2 − x3 ≤ 3

x1 ≥ 0

x2 ≥ 0.

This problem can be expressed in the following way (matrix form)

minimise cTx

subject to Ax ≤ b
x1, x2 ≥ 0,
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where cT = (3,−2, 7), b = (2, 5, 3)T and

A =

 1 5 1
3 −1 0
0 1 −1


Types of LPPs

Note, first of all, that any maximisation LLP can be reduced to minimisa-
tion. To achieve this, the cost vector c of the maximisation problem should
be replaced by −c (and maximisation by minimisation).

An LPP of the form

minimise cTx

subject to Ax = b

x ≥ 0

is said to be in standard form. It can be shown that any LPP can be reduced
to its standard form.

• Elimination of inequality constraints by introducing an additional sur-
plus variable or slack variable si.

n∑
j=1

aijxj ≤ bj ⇒
n∑

j=1

aijxj + si = bj .

• Elimination of unrestricted (free) variables. Any real number can be
presented as a difference of two non-negative numbers (there are sev-
eral possibilities to construct this difference). Since any unrestricted
variable xj can be presented as x+j − x

−
j , where x+j , x

−
j ≥ 0.

Therefore, any LPP can be expressed in its standard form, we only need to
develop an algorithm to optimise LPPs in their standard forms.

Note that it is also possible to convert

• equalities to inequalities:

n∑
j=1

aijxj = bj ⇔
{ ∑n

j=1 aijxj ≤ bj∑n
j=1 aijxj ≥ bj

• convert from min to max in the cost (objective) function and vice versa
by multiplying it by −1:

minimise

n∑
j=1

cjxj ⇔ maximise

n∑
j=1

−cjxj
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and leaving the constraint unchanged. In this case, the original and
obtained problems have the same optimal solutions; however, the their
objective function optimal values have opposite signs.

Example 5.2 [Example 1.3, Bertsimas and Tsitsiklis] The problem

minimise 2x1 + 4x2,

subject to x1 + x2 ≥3

3x1 + 2x2 =14

x1 ≥0

can be expressed as

minimise 2x1 + 4(x+2 − 4x−2 ),

subject to x1 + x+2 − x
−
2 + x3 =3

3x1 + 2(x+2 − x
−
2 ) =14

x1, x
+
2 , x

−
2 , x3 ≥0

For example, given the feasible solution (x1, x2) = (6,−2) to the original
problem, we obtain the feasible solution

(x1, x
+
2 , x

−
2 , x3) = (6, 0, 2, 1)

to the standard form problem, which has the same cost. Conversely, given
the feasible solution

(x1, x
+
2 , x

−
2 , x3) = (8, 1, 6, 0)

to the standard form problem, we obtain the feasible solution

(x1, x2) = (8,−5)

to the original problem with the same cost.

How to solve LPPs

Geometric method This method is based on the following theorem.

Theorem 5.1 The maximum or minimum of a linear program, if it exists,
will necessarily occur on a vertex (extreme point, corner point) of the feasible
set.
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Proof: Assume that in a linear program, an optimal solution x is not a
vertex. In this case, for any vector c there are feasible points y and z, such
that cx < cy and cx > cz. Therefore, since these conditions hold for any
c, it is also true for the cost vector of the linear program. Hence, indeed, x
can not be a maximum or a minimum of this linear program.

�

Definition 5.7 A set, where the objective function value remains constant,
is called level set.

Note that in the case of linear objective function (LPPs) level sets are
parallel lines.

Example 5.3 Consider the following linear program

min 3x+ y

subject to

x+ y ≤ 4

x, y ≥ 0

The feasible region is a triangle with vertices

(x = 0, y = 0), (x = 4, y = 0), (x = 0, y = 4),

see Figiure 6. The green line (they are parallel!!!) represent level sets. The
structure of these sets demonstrate that the optimal objective function value
is 12, reached at a corner point (x = 4, y = 0) of the feasible region.

Note that in Theorem 5.1 it is assumed that the minimum or maximum
should exist. There are two main types of LPPs where optimal solutions do
not exist.

1. Infeasible problems: the corresponding feasible sets contain no points,
that is the corresponding systems of linear inequalities does not have
any solution.

2. Unbounded problems: the corresponding feasible set is unbounded and
the cost function value is unbounded (positive for maximisation prob-
lems and and negative for minimisation problems).

Example 5.4 Consider the following LPP

minx+ 2y
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Figure 6: Corner point Theorem.

subject to

x+ y ≤ 1

x, y ≥ 2

In this case, the region where the first inequalities are satisfied is covered
with blue lines, while the region where the last two inequalities are satisfied
is covered with red lines (see Figiure 7). These regions do not intersect (that
is, they do not have any common points). Therefore, there is no point where
all three inequalities are satisfied.

Example 5.5 Consider the following LPP

maxx+ y

subject to

x+ y ≥ 3

x, y ≥ 1

The feasible region (see Figiure 8) is covered with blue lines. From the picture
one can see that the optimal cost function value is unbounded (infinitely
large).
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x = 2

Figure 7: Infeasible problem.

Note that

• in some LPPs the corresponding feasible sets may be unbounded, but
these problems have optimal solutions.

• some LPPs may have more than one solution, that is the optimal value
of the cost function is reached at more that one point.

According to Theorem 5.1, at least one of the optimal solutions is a
vertex. It can be demonstrated that the set of optimal solution is convex,
that is, for any two optimal solution, all the points from the segment that
joins these solutions are optimal solutions as well.

Example 5.6 Consider the following LPP

minx+ y

subject to

x+ y ≥ 3

x, y ≥ 1

This problem is similar to the one from Example 5.5, but the maximisation
of the cost function is changed to minimisation. Then the optimal value of
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Figure 8: Unbounded problem.
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the objective function is 4. This value is reached at two distinct vertices (x =
1, y = 3) and (x = 3, y = 1). In fact, any point from the segment that joins
these vertices gives the same cost function value. Therefore, all the points
from this segment are optimal solutions (see Figiure 8).

Simplex method and Interior points method These two techniques
are powerful optimisation tools, that are part of most optimisation software
packages, working with LPPs.

The simplex method was invented by Dantzig in 1947. A comprehensive
description of this method was published in 1963 (same author). The idea
behind this method is that an optimal solution (if exists) can not appear in
the interior of the feasible set (polyhedron), but at a vertex or on an edge.
The simplex method solves LPPs by visiting extreme points (vertices) of
the boundary of the feasible set, improving the objective function value at
every iteration. This method has been applied successfully to a wide range
of LPPs. However, when the dimension is increasing, the number of vertices
becomes very large.

In 1984 Karmarkar developed a new method, that was moving from one
interior point (not a vertex!) to another, improving the objective function
value at each iteration. This method (known as the interior point method or
IPM) has better theoretical properties and performs better than the simplex
method on very large problems.

These methods are included in most optimisation software. You will work
with these methods in your computer laboratory classes.
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6 More examples and applications

Production models

A company produces n different products using m different raw materials.
Let bi, i = 1, . . . ,m, be the available amount of the ith raw material. The
jth product (j = 1, . . . n), requires aij units of the ith material and can be
sold at the price cj dollars per unit produced. The company has to decide
how much of each product to produce in order to maximize its total revenue.

Let xj , j = 1, . . . , n, be the amount of the jth product. Then, the problem
can be formulated as follows:

maximize

n∑
j=1

cjxj (19)

subject to

n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m, (20)

xj ≥ 0, j = 1, . . . , n. (21)

(22)

Non-linear problems involving absolute values

Consider the following problem:

minimise
n∑

i=1

ci|xi| (23)

subject to Ax ≥ b. (24)

(25)

where x = (x1, . . . , xn) and the cost coefficients ci, i = 1, . . . n are assumed
to be nonnegative. The objective function is convex (as a sum of convex
functions). Note that |xi| is the smallest number zi, such that xi ≤ zi and
−xi ≤ zi, then we obtain an equivalent linear programming formulation

minimise

n∑
i=1

cizi (26)

subject to Ax ≥ b (27)

xi ≤ zi, i = 1, . . . , n, (28)

−xi ≤ zi, i = 1, . . . , n. (29)

Now consider another problem:

minimise max
j=1,...,m

|cjx + dj |. (30)

(31)
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Define a new variable
z = max

j=1,...,m
|cjx + dj |,

then
cTj x + dj ≤ z and − cTj x− dj ≤ z, j = 1, . . . ,m.

Then the corresponding linear programming formulation is

min z (32)

subject to cTj x + dj ≤ z, j = 1, . . . ,m (33)

− (cTj x + dj) ≤ z, j = 1, . . . ,m (34)

x ∈ Rn, z ∈ R, (35)

where z and xi, i = 1, . . . , n are the decision variables.

Data fitting

We are given n data points of the form (aT
i , bi), i = 1, . . . , n, where aT ∈ Rn

and bi ∈ R. The goal is to build a model that predicts the value of the
variable b for any given vector aT through a parameter vector x. For a
given parameter vector x, the residual, or approximation error, at the i-th
data point is |bi − aT

i x|.
Assume now that we can choose x (parameter vector) is such a way, that

the corresponding model is as accurate as possible, that is, the model that
results in small residuals (on available data).

Example 6.1 Consider polynomial approximation, that is, approximation
by polynomials. A polynomial of degree m can be presented as

p(t) =
m∑
j=0

ajt
j = aTT,

where aT = (a0, a1, . . . , am) and T = (1, t, . . . , tm)T .
Therefore, if a scalar bi is assigned to ti, i = 1, . . . , n, then the residual

bi − p(ti) = bi − aT
i Ti,

where aT
i = (ai0, ai1, . . . , aim) and Ti = (1, ti, . . . , t

m
i )T .

Chebyshev approximation One possibility is to minimise the largest
residual (Chebyshev approximation problem):

minimise max
i=1,...,m

|bi − aT
i x|

subject to
x ∈ R.
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This problem can be also formulated as a linear programming problem:

min z (36)

subject to aT
j x− bj ≤ z, j = 1, . . . ,m (37)

− aT
j x + bj ≤ z, j = 1, . . . ,m (38)

x ∈ Rn, z ∈ R, (39)

where z and xi, i = 1, . . . , n are the decision variables.

Sum of deviations Consider an alternative formulation, where the ob-
jective function is

m∑
i=1

|bi − aT
i x| (40)

Consider new variables zi = |bi − aT
i x|, i = 1, . . . ,m, that is

bi − aT
i x ≤ zi, i = 1, . . . ,m, (41)

−(bi − aix) ≤ zi, i = 1, . . . ,m. (42)

This is a linear programming problem, z1, . . . , zm and x are the decision
variables: programming problem:

min
m∑
i=1

zi (43)

subject to bi − aT
i x ≤ zi, i = 1, . . . ,m, (44)

− (bi − aix) ≤ zi, i = 1, . . . ,m. (45)

Least squares In some practical applications, it is possible to use a
quadratic based cost function:∑

(bi − aT
i x)2.

This cost function is often called a least squares fit. In most cases, this prob-
lem is easier than linear programming (can be solved using calculus methods).
We will study this problem in details in Convex Optimisation.
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