VA & Opt Webinar: Sidney Morris

Title: Tweaking Ramanujan’s Approximation of n!

Speaker: Sidney Morris (Federation University, and La Trobe University)

Date and Time: Wed Oct 20, 17:00 AEST (Register here for remote connection via Zoom)

Abstract:

In 1730 James Stirling, building on the work of Abraham de Moivre, published what is known as Stirling’s approximation of n!. He gave a good formula which is asymptotic to n!. Since then hundreds of papers have given alternative proofs of his result and improved upon it, including notably by Burside, Gosper, and Mortici. However Srinivasa Ramanujan gave a remarkably better asymptotic formula. Hirschhorn and Villarino gave a nice proof of Ramanujan’s result and an error estimate for the approximation. 

This century there have been several improvements of Stirling’s formula including by Nemes, Windschitl, and Chen. In this presentation it is shown 

(i) how all these asymptotic results can be easily verified; 

(ii) how Hirschhorn and Villarino’s argument allows a tweaking of Ramanujan’s result to give a better approximation; 

(iii) that a new asymptotic formula can be obtained by further tweaking of Ramanujan’s result;

(iv) that Chen’s asymptotic formula is better than the others mentioned here, and the new asymptotic formula is comparable with Chen’s.