VA & Opt Webinar: Quoc Tran-Dinh
Title: Randomized Douglas-Rachford Splitting Algorithms for Federated Composite Optimization
Speaker: Quoc Tran-Dinh (University of North Carolina)
Date and Time: Wed Sep 29, 11:00 AEST (Register here for remote connection via Zoom)
Abstract:
In this talk, we present two randomized Douglas-Rachford splitting algorithms to solve a class of composite nonconvex finite-sum optimization problems arising from federated learning. Our algorithms rely on a combination of three main techniques: Douglas-Rachford splitting scheme, randomised block-coordinate technique, and asynchronous strategy. We show that our algorithms achieve the best-known communication complexity bounds under standard assumptions in the nonconvex setting, while allow one to inexactly updating local models with only a subset of users each round, and handle nonsmooth convex regularizers. Our second algorithm can be implemented in an asynchronous mode using a general probabilistic model to capture different computational architectures. We illustrate our algorithms with many numerical examples and show that the new algorithms have a promising performance compared to common existing methods.
This talk is based on the collaboration with Nhan Pham (UNC), Lam M. Nguyen (IBM), and Dzung Phan (IBM).